National Repository of Grey Literature 12 records found  1 - 10next  jump to record: Search took 0.00 seconds. 
Determination of basic parameters of thermal water
Bilinský, Libor ; Čáslavský, Josef (referee) ; Vávrová, Milada (advisor)
The main aim of this study was to outline the theory of classification and the geochemistry of subsurface waters. It mainly deals with ground water cycle from its inception to the way the earth's surface. It describes the formation of the chemical composition of underground water and the formation of thermal waters, which were established in the practical parts of sulphates, chlorides and nitrates rapid colorimetric mobile analytics to a spectrophotometric cuvette ending as a referee method.
Flow, chemical and isotopic composition of water in unsaturated zone of the castellated sandstone at Klokočské skály area
Mikuš, Petr ; Bruthans, Jiří (advisor) ; Jiráková, Hana (referee)
The study is focused on character of flow, permeability, mean residence of water, chemical composition of water and chemical fluxes in unsaturated zone of castellated sandstone at Klokočské Skály area. Soil water as well as the water seeping from up to 15 m thick sandstone unsaturated zone consists of mixture of: A) Component with mean residence time 2-4 months (50-75% of mixture) and B) Component with mean residence time exceeding 4 years (25-50% of mixture). In winter the component A is missing in K3 drip place probably because of freezing conditions, which prevent infiltration of the fast component. Sulfates are the most abundant anion in studied waters with chemical flux in sandstone unsaturated zone (SUZ) 7-10 g/m2/year, which exceeds several times the influx from total (wet and dry) atmospheric deposition (1.2 g/m2/year). On the other hand nitrates flux is decreasing with depth (atmospheric deposition 1.7 g/m2/year; flux in SUZ 0.2-0.4 g/m2/year). Aluminum is the most abundant cation in SUZ (average concentration 6.3 mg/l, max. 35 mg/l). Flux of aluminum in SUZ is 2.5 g/m2/year, which is 80 times more that atmospheric deposition. Surprisingly the forest vegetation does not seem to suffer any directly visible damage. Silica is another substance which is intensively leached from SUZ. The most prominent...
Study of water flow and geochemical processes in the unsaturated zone of carbonate and salt karst
Kamas, Jiří ; Bruthans, Jiří (advisor) ; Tesař, Miroslav (referee) ; Buzek, František (referee)
Water flow and geochemical processes within the unsaturated zone (UZ) in two distinct types of karst environment were investigated using natural tracers (chemistry, stable isotopes 13 C, 18 O, 2 H, and 3 H, 14 C, 87 Sr/86 Sr). The extent of horizontal flow component and the response of drip water chemistry to recharge events were examined in the Moravian Karst (Czech Republic), while the character of water flow and its chemistry were studied in salt diapirs in southeastern part of the Zagros mountains (Iran). Under the conditions of well-developed epikarst, the horizontal flow component, defined as Hmax/T (Hmax = horizontal migration component, T - thickness of VZ) typically reaches values of 0.1 - 0.6 (Moravian and Slovenian Karst). However, in areas where epikarst was stripped off by glacial or human activity, the proportion of horizontal flow component is far greater (Hmax/T 1.6 - 24). This parameter is vital for the design of water source protection zones above caves. Nitrate mean residence time in 120 m thick VZ of the Moravian karst exceeded 16 years. The VZ above the Ochoz Cave (Moravian Karst) represents a semi-open to open system with respect to soil CO2. Under a high drip rate (high flow), the event water only made 5% of the total. During the year, water degassing and so called prior...
Flow and mean residence time in karst unsaturated zone (Ochoz Cave, Moravian Karst)
Vysoká, Helena ; Bruthans, Jiří (advisor) ; Buzek, František (referee) ; Tesař, Miroslav (referee)
Flow and mean residence time in epikarst and unsaturated zone was studied above the Ochoz cave in the Moravian Karst. I studied various flow components with different residence time in unsaturated zone and the influence of soil and epikarst on seepage composition and residence time by means of several methods (longterm monitoring of conductivity, flowrate of seepage and soil water, use of environmental tracers - 18 O, 3 H, CFC and SF6, flow into the soil and detailed sampling during intesive rain events). Seepage sites Kašna in the Rudické propadání cave system and Mapa Republiky in Býčí skála were reference localities in unsaturated zone. For comparison I modeled residence time in saturated zone: at Kaprálka outlet close to the Ochoz cave, at Stará řeka (Rudické propadání) and Konstantní přítok (Amatérská cave). Mean residence time in unsaturated zone above the Ochoz cave reaches 7 - 20 years, while it is only few months in the soil (1 - 8 months, depending on the depth). At Kašna seepage site, the reasidence time is similar to the Ochoz cave - about 18 - 20 years, at Mapa republiky seepage site, it reaches 150s year due to unusual geological settings. Mean residence time in order of 10 - 20 years corresponds to storativity values (0.6 % in average) calculated from parallel water level recession...
Study of water flow and geochemical processes in the unsaturated zone of carbonate and salt karst
Kamas, Jiří ; Bruthans, Jiří (advisor) ; Tesař, Miroslav (referee) ; Buzek, František (referee)
Water flow and geochemical processes within the unsaturated zone (UZ) in two distinct types of karst environment were investigated using natural tracers (chemistry, stable isotopes 13 C, 18 O, 2 H, and 3 H, 14 C, 87 Sr/86 Sr). The extent of horizontal flow component and the response of drip water chemistry to recharge events were examined in the Moravian Karst (Czech Republic), while the character of water flow and its chemistry were studied in salt diapirs in southeastern part of the Zagros mountains (Iran). Under the conditions of well-developed epikarst, the horizontal flow component, defined as Hmax/T (Hmax = horizontal migration component, T - thickness of VZ) typically reaches values of 0.1 - 0.6 (Moravian and Slovenian Karst). However, in areas where epikarst was stripped off by glacial or human activity, the proportion of horizontal flow component is far greater (Hmax/T 1.6 - 24). This parameter is vital for the design of water source protection zones above caves. Nitrate mean residence time in 120 m thick VZ of the Moravian karst exceeded 16 years. The VZ above the Ochoz Cave (Moravian Karst) represents a semi-open to open system with respect to soil CO2. Under a high drip rate (high flow), the event water only made 5% of the total. During the year, water degassing and so called prior...
Flow and mean residence time in karst unsaturated zone (Ochoz Cave, Moravian Karst)
Vysoká, Helena ; Bruthans, Jiří (advisor) ; Buzek, František (referee) ; Tesař, Miroslav (referee)
Flow and mean residence time in epikarst and unsaturated zone was studied above the Ochoz cave in the Moravian Karst. I studied various flow components with different residence time in unsaturated zone and the influence of soil and epikarst on seepage composition and residence time by means of several methods (longterm monitoring of conductivity, flowrate of seepage and soil water, use of environmental tracers - 18 O, 3 H, CFC and SF6, flow into the soil and detailed sampling during intesive rain events). Seepage sites Kašna in the Rudické propadání cave system and Mapa Republiky in Býčí skála were reference localities in unsaturated zone. For comparison I modeled residence time in saturated zone: at Kaprálka outlet close to the Ochoz cave, at Stará řeka (Rudické propadání) and Konstantní přítok (Amatérská cave). Mean residence time in unsaturated zone above the Ochoz cave reaches 7 - 20 years, while it is only few months in the soil (1 - 8 months, depending on the depth). At Kašna seepage site, the reasidence time is similar to the Ochoz cave - about 18 - 20 years, at Mapa republiky seepage site, it reaches 150s year due to unusual geological settings. Mean residence time in order of 10 - 20 years corresponds to storativity values (0.6 % in average) calculated from parallel water level recession...
Flow, chemical and isotopic composition of water in unsaturated zone of the castellated sandstone at Klokočské skály area
Mikuš, Petr ; Bruthans, Jiří (advisor) ; Jiráková, Hana (referee)
The study is focused on character of flow, permeability, mean residence of water, chemical composition of water and chemical fluxes in unsaturated zone of castellated sandstone at Klokočské Skály area. Soil water as well as the water seeping from up to 15 m thick sandstone unsaturated zone consists of mixture of: A) Component with mean residence time 2-4 months (50-75% of mixture) and B) Component with mean residence time exceeding 4 years (25-50% of mixture). In winter the component A is missing in K3 drip place probably because of freezing conditions, which prevent infiltration of the fast component. Sulfates are the most abundant anion in studied waters with chemical flux in sandstone unsaturated zone (SUZ) 7-10 g/m2/year, which exceeds several times the influx from total (wet and dry) atmospheric deposition (1.2 g/m2/year). On the other hand nitrates flux is decreasing with depth (atmospheric deposition 1.7 g/m2/year; flux in SUZ 0.2-0.4 g/m2/year). Aluminum is the most abundant cation in SUZ (average concentration 6.3 mg/l, max. 35 mg/l). Flux of aluminum in SUZ is 2.5 g/m2/year, which is 80 times more that atmospheric deposition. Surprisingly the forest vegetation does not seem to suffer any directly visible damage. Silica is another substance which is intensively leached from SUZ. The most prominent...
Study of vadose zone in northern part of Moravian Karst
Gregorová, Anita ; Bruthans, Jiří (advisor) ; Kamas, Jiří (referee)
This study is focused on the flow through the uppermost part of the unsaturated zone in karstified areas. The information about distribution of transit times and chemical reactions taking place in the unsaturated zone is based on isotopic and chemical composition of cave dripwaters, precipitations and water caught by gravitation lysimeters. The water balance was calculated using measurements of intensity of dripwaters and amounts of water caught by lysimeters and rain gauges. The velocity of a hydraulic shockwave between monitored objects was also estimated according to the delay between significant precipitation event and dripwater intensity increase. The field study took place in the Němcova 1 cave in the northern part of Moravian Karst, near the village Suchdol. It was carried out during the hydrological year 2010/2011. The cave is about 13 m under the surface. The information about composition of overlaying rock above the cave was obtained using geoelectrical and electromagnetic measurements. Studied geological environment is built of 0.5 - 1.5 m of soil, 0.5 - 3.5 m of epikarst and a layer of massive limestone as thick as 10 m. About 70 to 90 % of dripwaters have residence time over 4 years. The distribution of transit time of younger water can be described using the exponencial model (well...

National Repository of Grey Literature : 12 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.